(High resolution) In-beam γ-ray spectroscopy above 100 MeV/u D. Bazin NSCL/FRIB/MSU

Why high resolution?

- Limitations of moderate resolution γ -ray arrays (7 10%)
 - High γ -ray density and high energy γ -rays (> 2 MeV)
 - Gating on photo peak becomes impossible
 - Example shown: one-neutron knockout on ³⁵Si (J. Enders et al., PRC 65, 034318
 - Such issues led in part to the construction of the SeGA array at the NSCL

What are the issues?

- High energies are good for projectile fragmentation
 - Can use thicker targets to increase luminosity
 - Better collection of fragments in acceptance of fragment separator
- Not so good for high resolution in-beam γ -ray spectroscopy
 - Doppler shift accentuated
 - Lifetime effects accentuated
 - Background increased
- Are there any solutions?

Doppler shift

- γ -ray energy resolution
 - Contribution from uncertainty in γ -ray angle $\varDelta \theta$
 - Contribution from uncertainty in particle velocity $\varDelta\beta$
- Both contributions scale with velocity
 - Matching intrinsic resolution of high resolution detectors becomes increasingly difficult with higher energy
 - T. Glasmacher, Annu. Rev. Nucl. Part. Sci. 1998. 48:1–31

Angular resolution / efficiency

- Required angular resolution
 - Use Doppler resolution formula the other way to calculate necessary angular resolution to keep γ-ray energy resolution
 - Fixed position resolution implies moving array away from target
- Efficiency loss
 - Solid angle coverage scales with r²
 - Efficiency roughly scales inversely with energy

Energy resolution

- Keep angular resolution and solid angle
 - Energy resolution worsens with increasing beam energy
 - At some level, high intrinsic resolution of detector becomes irrelevant
- γ-ray tracking
 - With Gretina 0.7° resolution, energy resolution can stay under control

Lifetime

- Effects of larger velocities
 - Loss of resolution and deformation of photo peak shape
 - Possibility to determine lifetime
 - Example shows 336 keV transition which has a lifetime of 1.3^{+0.03}-0.24 ns
- Monte-Carlo simulation
 - Resolution actually first improves slightly due to better determination of velocity
 - From J. R. Terry, PhD thesis, NSCL '06

Solutions?

- Use high efficiency array and γ - γ coincidences
 - Relies on "get lucky" policy where γ -ray energies don't overlap
 - Example: ³³Mg experiment only possible when using γ - γ coincidences

Solutions?

- Slow down the radioactive beams
 - Emittance growth is inevitable, but can be overcome via tracking
 - Reactions in slowing material will contaminate radioactive beam
 - Example: slowing some of RIBF radioactive beams to 100 MeV/u

Fragment of Interest	Primary Beam	Energy (MeV/u)	Target Thickness (mm)	RIB Energy (MeV/u)	Slowing Material (mm)	Angular Straggling (mrad)	Energy Straggling (%)
³⁴ Mg	⁴⁸ Ca	350	16	268	39	12	1.3
⁸⁰ Zn	⁸⁶ Kr	350	7	256	13	7.4	0.81
¹¹¹ Zr	¹²⁴ Sn	350	5	256	10	6.2	0.68
¹⁴⁰ Sn	²³⁸ U	345	4	237	7	5.5	0.56